Development of a scalable model for predicting arsenic transport coupled with oxidation and adsorption reactions.

نویسندگان

  • Tanja Radu
  • Anjani Kumar
  • T Prabhakar Clement
  • Gautham Jeppu
  • Mark O Barnett
چکیده

Understanding the fundamentals of arsenic adsorption and oxidation reactions is critical for predicting its transport dynamics in groundwater systems. We completed batch experiments to study the interactions of arsenic with a common MnO2(s) mineral, pyrolusite. The reaction kinetics and adsorption isotherm developed from the batch experiments were integrated into a scalable reactive transport model to facilitate column-scale transport predictions. We then completed a set of column experiments to test the predictive capability of the reactive transport model. Our batch results indicated that the commonly used pseudo-first order kinetics for As(III) oxidation reaction neglects the scaling effects with respect to the MnO2(s) concentration. A second order kinetic equation that explicitly includes MnO2(s) concentration dependence is a more appropriate kinetic model to describe arsenic oxidation by MnO2(s) minerals. The arsenic adsorption reaction follows the Langmuir isotherm with the adsorption capacity of 0.053micromol of As(V)/g of MnO2(s) at the tested conditions. The knowledge gained from the batch experiments was used to develop a conceptual model for describing arsenic reactive transport at a column scale. The proposed conceptual model was integrated within a reactive transport code that accurately predicted the breakthrough profiles observed in multiple column experiments. The kinetic and adsorption process details obtained from the batch experiments were valuable data for scaling to predict the column-scale reactive transport of arsenic in MnO2(s)-containing sand columns.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling of Arsenic and Selenium in Soils

Inorganic Chemistry of As and Se in Soil Solution .......................................... 66 Methylation and Volatilization Reactions ......................................................... 66 Precipitation-Dissolution Reactions .................................................................. 68 Oxidation-Reduction Reactions ..................................................................

متن کامل

A Model of Irreversible Electro-Oxidation Inhibited by Either Adsorption or Surface Complexation of the Product

Theoretical models of irreversible electro-oxidation of dissolved reactant giving dissolved product on the stationary planar electrode are developed for the conditions of staircase cyclic voltammetry. In the first model it is assumed that the product is adsorbed on the electrode surface and that the adsorbate prevents the transfer of electrons. In the second model it is assumed that the electro...

متن کامل

Arsenic(III) oxidation and arsenic(V) adsorption reactions on synthetic birnessite.

The oxidation of arsenite (As(III)) by manganese oxide is an important reaction in both the natural cycling of As and the development of remediation technology for lowering the concentration of dissolved As(III) in drinking water. This study used both a conventional stirred reaction apparatus and extended X-ray absorption fine structure (EXAFS) spectroscopy to investigate the reactions of As(II...

متن کامل

Removal of Arsenic from Water Using Aluminum Nanoparticles Synthesized through Arc Discharge Method

The present study describes a novel procedure for As (V) removal from water using pure Al nanoparticles (AlNps) prepared by arc discharge technique. Some spectroscopic and microscopic techniques such as X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Brunauer–Emmett–Teller (BET) and Barrett–Joyner–Halenda (BJH) corroborated the s...

متن کامل

Intrinsic properties of cupric oxide nanoparticles enable effective filtration of arsenic from water

The contamination of arsenic in human drinking water supplies is a serious global health concern. Despite multiple years of research, sustainable arsenic treatment technologies have yet to be developed. This study demonstrates the intrinsic abilities of cupric oxide nanoparticles (CuO-NP) towards arsenic adsorption and the development of a point-of-use filter for field application. X-ray diffra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of contaminant hydrology

دوره 95 1-2  شماره 

صفحات  -

تاریخ انتشار 2008